Kick Off Your Energy Management Program

When you walk into a big industrial plant, it is easy to be overwhelmed by the question “where on earth is all the energy going?” When I was a young engineer, I certainly was overwhelmed and I spent a lot of time doing detailed work on unimportant things. With most things in lifethe 80/20 rule is true and it is true for energy usage as well.

If you are adopting a systematic approach to energy management, you need to know:

  1. how much energy you buy in (your energy sources) and
  2. what is your end-use of that energy, and in particular, your significant energy uses (SEUs)

When you know the end uses of your energy in industrial processes or in buildings, you are in a position to make very dramatic energy reductions – instead of tinkering around in the utilities building.

In an ideal world:

  • you would like to plot your Sankey (energy flow) diagram
  • then identify your biggest energy saving opportunities by focusing on the significant energy uses

For example:

  1. In a breakfast cereal plant, we found that 70% of all of the energy was used in the drying of finished cereal. This made us focus on energy saving opportunities around the recovery of heat and latent heat from the dryer exhaust.
  2. In a high-end pharmaceutical manufacturing plant, we found that 80% of all of the end-use energy was used for climate control of clean rooms. This caused us to focus on HVAC, scheduling of clean room operation and re-examining regulatory requirements.
  3. In a university, we found that energy use was very widely fragmented and that most energy use was under the control of staff in local departments. This caused us to focus the energy management program around training and communication activities for employees and students.
  4. In a supermarket chain, we found that only 2% of energy was used for lighting of outdoor car parks. Before this analysis, some supermarkets had been investing time and effort on energy reduction in car park lighting because customers had complained about apparent energy wastage. After the analysis, the supermarkets re-focused on the bigger energy uses such as refrigeration, chilled displays and interior lighting.

When it comes to figuring out your end-use energy, the two common approaches are:

  • Calculation – by energy specialists using the equipment power ratings, operating schedules, advanced calculation techniques, sometimes including simulation
  • Metering – designing, tendering and substantially investing in automated metering systems

Both these approaches require a substantial investment of time and/or money – and this can delay your start on taking energy-saving actions.

The question is this: would you get better value for money by focusing on the most important energy uses from the start, rather than making an equal distribution of time and money across the entire plant?

If you are hiring energy analysis specialists, you could focus them on the biggest energy consumers.

Regarding metering, too many people “over- meter” too early and with the result that they have poorly designed and unbalanced metering systems – and they spend too much money on the wrong thing. For example, I very often see industrial plants that have hundreds of electrical meters and only one or two thermal meters – even though electrical /thermal energy use is split 50-50!

What is the value of guesstimation and visualization?

For different sectors within industry and buildings, there are research results available which will give a rough first estimate of the energy breakdown for your sector. So, why not search for results on the web and then apply the percentage breakdown to your site.

Or:

If you are in a very specialized industry, perhaps it is you who is the expert. Perhaps you have a rough idea yourself, from your experience.

Here is a Sankey diagram which shows all energy uses and clearly highlights significant energy uses (it also shows which of these are metered).

sankey diagram enerit

Now, can you visualize it? When you see your breakdown clearly, you can see what energy is “unaccounted” – i.e. you do not know where it is used! For example, I know of a manufacturing operation with long experience of making project-based energy-saving improvements. Only when they did a Sankey-style energy balance did they discover that 30% of their energy was being used in their water treatment plant at the back of their site (and “unaccounted”) – this demonstrates the importance of a top-down analysis of their energy use!

When you visualize, you can also decide which energy streams need extra metering and which ones just need an improved estimate – and depending on the size of the energy flow.

When you visualize, you can motivate your management by showing graphically key areas of energy cost reduction.

Bottom line: Yes – guesstimation will save you time and money. So, make your first guesstimate now, find a way to visualize it, and get focused on key areas for: saving energy now; improving your estimates; and investment in metering!

Paul F. Monaghan, Ph.D., is CEO of Enerit. Paul is a 30-year veteran of energy management throughout North America and Western Europe. As Enerit CEO, he is responsible for setting the strategic direction of Enerit energy software products. Enerit is a global leader in delivery of innovative systematic energy management system (EnMS) software to support Energy Star, ISO 50001, SEP and all EnMS based on the ISO 50001 approach. Enerit EnMS software is complementary to and integrates with monitoring and energy reporting software. Enerit software includes dynamic Sankey diagrams to make it easier to get started with a systematic EnMS approach.

A Beautiful Mind – on the Pareto Efficiency Frontier (post di James Ferguson)

So I will not apologize for the wonderful title of this post, because it really does represent the exact issues I want to discuss today in terms of energy efficiency. Rather, I apologize, because this post is really written for the exploring engineer, not for the spoon-fed. It will be complex and I may ask questions. But I will provide enough layman’s background that anyone bright and persistent enough can understand.

We will touch on the simplest ideas of energy efficiency, and mix in aspects of Nash’s work in game theory for optimization of winning strategies. This is The Nash Equilibrium – the brilliant outcome of thestar mathematician and man who struggled and learned to manage paranoid schizophrenia portrayed in the wonderful film A Beautiful Mind

Portrait of Vilfredo Pareto.
Portrait of Vilfredo Pareto. (Photo credit:Wikipedia)

All-in-all we will argue about whether energy efficiency has been argued about enough, and we will also look at the Pareto Frontier (in layman’s terms).

We will see that the way buildings control systems are operated to day are generally sub-optimal because we do not even consider everyday economic or game strategy theories to our objectives.

We are guilty, because we let the big players in our industry get away with giving; not second best but provably sub-optimal worsts!

I dare say, some of these ideas may be new to you – as they are to me, so when I have them wrong please, please do comment and correct my thinking (in the comments section below rather than on linkedInbecause otherwise only some readers see them). Better still think and contribute and enrich the discussion, because its written for us all…

Where do we start? At the beginnings of Game Theory.

Let’s imagine that an simple air handling unit supply (AHU) is a battleground between two gaming warriors. Lets introduce them:

Henry (the Heater)
Henry cares primarily that fresh air is delivered at least warm enough for comfort – lets say 15 C (59F)
(Note to laymen air warms up because of unintended sources so a supply below comfort temperature is normal)
When he has been in error he seeks to correct the total sum of his historical errors to zero.
Given that achievement he seeks to use as little heat as possible.

Charles (the Chiller)
Charles cares primarily that fresh air is delivered at least warm  cool enough for comfort – lets say 15.5 C (59.9 F)
When he has been in error he seeks to correct the total sum of his historical errors to zero.
Given that achievement he seeks to use as little cooling as possible.

There is a third character Henrietta – She is an energy manager, and she applies common sense. More of  Henrietta later.

The more aware of readers will realize that Henry and Charles sound as though they been set up according to normal convention with PID loops for control and they have probably been set up for a fight !

http://www.me.umn.edu/labs/teel/110Research12Stanley.htm

Above we see a standard set up according to the Thermal Environmental Engineering Laboratory – And YES its wrong despite the research being funded by the Department of Homeland Security (LOL) To see an AHU that is set up well see here 

The BIGGEST difference is that the good one has a temperature sensor immediately after the heating coil and the rubbish one does not.

In my experience cost cutting measures eliminate this very cheap, very essential sensor in around 95% of implementations including some by the biggest players in the AHU supply market (over 1.5 Billion Euros in Europe alone).

Why is this sooooo stupid ?

Technically (and I accept the jargon is not too important – but I want some keywords to get some engineers thinking about this) –

The first can stabilize at many Nash Equilibria that do not lie on the Pareto Efficiency Frontier.

In English (or engineering) ?

When the PID loops controlling each coil (or  register or heat exchanger) achieves its fundamental objective of comfort (that is Henry and Charles are basically happy) both H and C are active under the majority of cases.

So simplistically if air is coming in at 10C Henrietta would like to hold Henry back to delivering air at 15C and stop Charles doing anything at all.  But if Henry does say 75% output and Charles does 25% output there is still heating on balance so H and C are happy but Henrietta is not.

Henry and Charles are happy because they have found a Nash Equilibrium. They achieve their objectives, but knowing the others strategy does not allow them to change their position of being in conflict.

This is referred to in the wiki article above which states:

“The Nash equilibrium may sometimes appear non-rational in a third-person perspective. This is because it may happen that a Nash equilibrium is not Pareto optimal.

The Nash equilibrium may also have non-rational consequences in sequential games because players may “threaten” each other with non-rational moves”.
Henrietta cries foul ! She sees that if Henry would back off, Charles could too, or if Charles would back off Henry would too.  But Henry and Charles have a job to do and cannot budge an inch.
Henrietta realizes if she forced the implementation of the temperature sensor downstream from Henry that is upstream from Charles, Henry would play his own game and ignore Charles’ strategy.
The very fact that Henry does not know Charles means that he optimises for heating at no error between coils.  This means that Henry never calls on Charles to cool.
Now for the cost of a few cents or euros a new sensor prevents Nash Equilibria that are not simultaneously on the Pareto Efficiency Frontier :
“Pareto efficiency, or Pareto optimality, is a concept in economics with applications in engineering. The term is named after Vilfredo Pareto (1848–1923), an Italian economist who used the concept in his studies of economic efficiency and income distribution[citation needed]. In a Pareto efficient economic allocation, no one can be made better off without making at least one individual worse off. Given an initial allocation of goods among a set of individuals, a change to a different allocation that makes at least one individual better off without making any other individual worse off is called a Pareto improvement. An allocation is defined as “Pareto efficient” or “Pareto optimal” when no further Pareto improvements can be made.”
“The notion of Pareto efficiency is also useful in engineering. Given a set of choices and a way of valuing them, the Pareto frontier or Pareto set or Pareto front is the set of choices that are Pareto efficient. By restricting attention to the set of choices that are Pareto-efficient, a designer can make tradeoffs within this set, rather than considering the full range of every parameter”  (from wiki)
And it just so happens that Nash Equilibra on the Pareto Efficiency Frontier in this very common case are Strong Pareto Optima, in all cases where in the other cases Nash Equilibria are not Pareto efficient.
Simply stated this means that taking the sensor out costs you in almost all circumstances !
FACT it is the single greatest source of comfort heat-fighting chilling globally  – and it seems nobody gives a damn.
Now Henrietta has a friend who is an idiot – his name is Wasteful Walther.
Walther says – “we don’t need the sensor – because we prevent simultaneous heating and chilling by inhibiting valve positions being both open.”
Idiotic! – because heating happens from a hot heat exchanger AFTER you close it, and the time delay changes with load.
Walther also says – “we control with PID loops which achieve zero error over time”.
Well Walther a PID loop requires a linear response to do that without transient instability and there is not one here – it also requires a decoupled proportional signal of the error caused by the output driven – also not available here.
So we should be good Henrietta’s, save time and energy and get a sensor after (but far enough from) each controlled action and use it as a source of feedback.
The beauty of a Nash Equilibrium on the Pareto Efficiency Frontier is that it is cheap achievable and you KNOW it makes sense !

Energia rinnovabile: uno sguardo critico

Many qualify electricity from solar panels or wind mills, in a poetical mode, as free energy.
There is no such a thing as free energy. It is renewable, but not free. It requires a large energy investment to produce solar panels or wind mills. It is imperative to use the proper tools to analyze any of the so called renewable sources of energy and dispel the notion that they represent free energy.
The objective of those renewable sources is to have a positive future flow of output energy, and that flow of renewable energy should be able to pay the initial investment in non renewable energy in a short period of time, say a maximum of 3 years. This standard indicates that we have a real innovation. Any Government financial support does not change the reality of our objective, fast payback of the energy investment.
This is the only objective we should have for a measure of reasonable sustainability and cut our dependency on foreign oil.
As you can deduct, this definition of sustainability is independent of the price of oil, as it should be. Let’s check the situation of the three most common projects for renewable sources with the standard mentioned above.
1. Ethanol: The future flow of renewable energy is negative. There is nothing left to pay for the humongous required energy investments-1 Gallon of ethanol, uses 1.85 Gallons of oil- If we do nothing, we will be better off in terms of energy consumption and emissions now and in the future. The government support, with all their financial help, cannot change the negative energy balance and the enormous increase in present emissions. Our goal is not fulfilled.
2. Wind Mills: The future flow of renewable energy is positive. However the very large investments in energy to engineer and build the units, including power lines, have an energy payback beyond 30 years.
This investment does not avoid the investment in carbon, gas, or nuclear power plants to cover the ~70% of the time they are not producing electricity. We are increasing dramatically the power consumption and emissions as we build the units now, for a meager yearly renewable volume of power. . Our goal is not fulfilled
2. Solar panels: The future flow of renewable energy is positive. The pay back for the initial energy consumption is beyond 50 years. Solar panels produce energy in average ~20% of the time. Any standard technology, let’s say small generators consuming natural gas, cost 1/30 of the energy cost of a solar panel for an equal total output.
We seem to be digging our own grave with gusto. None of those projects comply with the most elementary energy objective we have as a country; on the contrary, they produce a considerable spike of energy usage now, that could be avoided, and I doubt that they will ever have a proper pay back in created energy.
There is no wealth creation in these activities, no energy savings, only an immediate transfer of money from the Taxpayers to somebody else, destroying other Industries in the meantime.
Due to all kind of government money injected into these projects, and the high price of oil, money could be made. But if the price of oil goes below a certain threshold, boom, the project is no longer viable. See T. Boone Pickens suspending his wind mill project because oil went below US$60. Or the several bankruptcies in ethanol due to the higher price of corn in spite of all the subsidies! Millions of barrels of oil that we cannot afford to loose, thrown to the wind.
None of those programs complies with cutting CO2 emissions, a suspected objective anyway.
They make our dependence of foreign oil much worst, not better, using considerable high level engineering resources for naught.
There are enormous opportunities in energy savings and production in many Industries, with a positive balance of energy consumption and paybacks anywhere from 4 months to one year.

Concept di bungalow ecocompatibile

Image

L’utilizzo di diverse fonti rinnovabili e di altrettante tecnologie per la produzione di energia è una scelta mirata ad una gestione sostenibile del territorio, che permette di sfruttarne al meglio le risorse (energetiche, idriche, agricole,..) senza però comprometterne irreversibilmente la funzionalità.
I diversi sistemi sono integrati in modo tale da minimizzare l’apporto di energia esterna e garantire allo stesso tempo il funzionamento dell’intero complesso nel caso venga a mancare un elemento.
Così l’energia elettrica generata dalla pala eolica e dagli impianti fotovoltaici è garantita anche in caso di blackout; viceversa il sistema è alimentato dalla rete di distribuzione nel caso di un guasto agli impianti.
Nel centro servizi l’impianto solare termico fornisce parte dell’acqua calda al ristorante, ai servizi igienici centrali e alle altre strutture, riducendo così i consumi di gas o di gasolio per l’alimentazione della caldaia.
Nei bungalow invece sia l’acqua calda che il riscaldamento, necessario per brevi periodi durante l’anno, sfruttano l’energia elettrica fornita dall’impianto fotovoltaico.
Qui il sistema di raccolta delle acque bianche, utilizzate per lo scarico del wc, consente una riduzione dei consumi di acqua potabile. Inoltre l’intero sistema di scarico dei bungalow (acque nere e acque grigie) confluisce alla vasca di fitodepurazione interrata e poi ad un serbatoio di raccolta delle acque depurate da utilizzare per l’irrigazione dell’orto e delle aree verdi, con un ulteriore risparmio di acqua potabile.
Infine il sistema di raccolta dei rifiuti organici, dislocato nei bungalow e nel centro servizi, permette di ottenere concime biologico per l’orto e le piante.
Un altro aspetto importante per la sinergia dei vari sistemi è la disposizione degli spazi all’interno dell’area del camping, che può essere suddivisa in zone di utilizzo (per es. zona abitativa, zona agricola, zona ricreativa, zona infrastrutture e servizi,…). Questo permette di disporre le varie strutture, compatibilmente con le caratteristiche naturali e morfologiche dell’area, in modo da limitare la dispersione dei flussi di energia, l’impatto antropico, gli spostamenti ed ogni possibile danno all’ambiente e alle sue risorse.
E’ per questo che, ad esempio, la vasca di fitodepurazione dovrà trovarsi nei pressi dei bungalow da cui riceve i reflui e così l’orto sorgerà a ridosso del serbatoio di raccolta delle acque depurate destinate all’irrigazione.
Questo approccio alla gestione del territorio deriva dalla Permacultura, una pratica integrata di progettazione e conservazione consapevole ed etica dei sistemi produttivi che si basa su alcuni principi:
Individuare le relazioni funzionali fra i vari elementi di un sistema naturale;
Ogni elemento in un sistema naturale svolge molte funzioni, bisogna cercare di sfruttare tutte le potenzialità di ogni elemento;
Ogni funzione può essere esercitata da più elementi. E’ necessario progettare in modo che tutte le funzioni importanti possano essere svolte anche quando qualche elemento non funziona;
Favorire la biodiversità: progettare in modo da aumentare le relazioni fra gli elementi piuttosto che il numero di elementi;
Minimizzare l’apporto di energia esterna, progettando sistemi che sfruttano le risorse presenti in loco, riciclare e riutilizzare il più possibile.

In questo modo le funzioni delle persone, delle piante, degli animali e della terra sono riconosciute ed integrate per massimizzare i risultati e realizzare ambienti umani sostenibili.

Il progetto prevede l’installazione di impianti di alimentazione che utilizzano energie da fonti rinnovabili diverse:

Eolico
E’ prevista l’installazione di un impianto microeolico con potenza nominale di 3 kW. Questo sarà alimentato da un generatore ad asse verticale, capace di sfruttare qualsiasi direzione del vento, resistente alle forti raffiche e con un basso impatto acustico e visivo. L’impianto contribuirà, attraverso il sistema di distribuzione, a fornire l’energia elettrica necessaria alle attività del centro servizi, alle piazzole del camping e all’illuminazione notturna. Ciò permetterà di risparmiare sui consumi di energia elettrica acquistata dalla rete e di ridurre le emissioni di CO2, SO2, NO2.

Solare termico
Sul tetto del centro servizi saranno applicati dei collettori piani diretti (8 mq circa di superficie totale), collegati ad un serbatoio captante posto nel sottotetto e ad una caldaia di integrazione. Questo impianto permetterà di fornire parte dell’acqua calda necessaria ai servizi, al ristorante e alla reception, con un notevole risparmio energetico e una riduzione delle emissioni di CO2.

Fotovoltaico
Ognuno dei quattro bungalow sarà dotato di un piccolo impianto fotovoltaico (1 kW) per la produzione di energia elettrica. Ogni impianto è costituito da una serie di moduli fotovoltaici posti sul tetto spiovente del bungalow (7 mq circa di superficie) collegati ad un inverter installato a parete all’interno dell’abitazione.
Questo sistema fornirà l’energia elettrica necessaria ai servizi del bungalow, compresi il riscaldamento dell’acqua (attraverso boiler elettrico) e dell’ambiente nei periodi più freddi. E’ infatti prevista l’installazione di un sistema di riscaldamento radiante, costituito da una serie di serpentine alimentate elettricamente, poste sotto il pavimento della camera da letto.
I bungalow sono comunque collegati alla rete di distribuzione nel caso l’energia elettrica prodotta dall’impianto fotovoltaico sia insufficiente. Anche questo impianto consentirà un risparmio sui consumi di energia elettrica e un minore inquinamento legato alle emissioni di CO2, SO2, NO2.

Altri sistemi di recupero in dotazione ai bungalow
Ogni bungalow sarà dotato di una serra per la coltivazione di piccole piante (aromatiche e ornamentali) e la raccolta dei rifiuti organici prodotti.
La serra permetterà poi di nascondere un sistema di raccolta delle acque bianche. Questo sistema consentirà di raccogliere l’acqua piovana captata dal tetto e utilizzarla per lo scarico del wc.

Fitodepurazione
E’ in progetto la realizzazione di un sistema di fitodepurazione, posto nei pressi dei bungalow. Ad esso confluiranno, dopo una depurazione preliminare in fossa biologica (tipo Imhoff), sia le acque grigie che le acque nere.
L’impianto, a flusso sommerso orizzontale, è costituito da un bacino impermeabilizzato riempito con materiale ghiaioso e vegetato da macrofite atte alla depurazione. Questo sistema garantisce la totale assenza di cattivi odori e di insetti, inoltre va a creare un’area verde calpestabile (50 mq circa, 20 abitanti Eq) e riduce i consumi di energia elettrica del 50% rispetto alla depurazione tradizionale.
Le acque così depurate potranno essere utilizzate per l’irrigazione dell’orto e delle aree verdi del camping.

Green Public Procurement – la strada della PA verso la sostenibilità

ImageQuando si cerca di interpretare il panorama “ecologico” di questo scorcio di XXI secolo, alcune delle chiavi più importanti le dà Georgescu-Roegen, il grande economista ecologico rumeno: solo la natura produce ricchezza e si presenta come realmente produttiva (che “produce” realmente qualcosa) mentre il ciclo economico di produzione-distribuzione-consumo si presenta come organizzatore e consumatore di risorse già create.

In quest’ottica come si conciliano le necessità della “natura” con quelle di una società complessa e fortemente non lineare come quella odierna? Parlare genericamente di “sviluppo sostenibile” rischia di essere una comoda foglia di fico. Più utile cercare quei metodi che permettono di avviare il volano di produzioni eco-compatibili, come ad esempio la “Politica Integrata di Prodotto” (Integrated Product Policy – IPP) che attraverso una pluralità di strumenti cerca di contenere gli impatti ambientali associati: Ecolabel, valutazioni d’impatto, analisi del ciclo di vita, ecc.

Si fa strada la maturazione di una tale coscienza anche nella Pubblica Amministrazione, con l’accordo “Europa 2020”, promulgato dalla Commissione Europea per tracciare le strategie dello sviluppo Europea per la prossima decade, al quale è strettamente collegato il Patto dei Sindaci, un protocollo liberamente sottoscritto dalle Amministrazioni Comunali, che si impegnano ad adottare volontariamente specifiche misura di tutela dell’Ambiente, strategie di abbattimento delle emissioni di gas ad effetto serra e sostenibilità ambientale, sociale ed economica.

Una delle misure più interessanti in questo senso è il Green Public Procurement (GPP), ossia la corsia preferenziale che le Pubbliche amministrazioni dovrebbero riservare ad acquisti a ridotto impatto ambientale: risulta chiaro che se una parte consistente di amministrazioni pubbliche incrementerà la propria domanda di prodotti “ecologici” ci sarà un effetto enorme sul mercato dei prodotti compatibili con l’ambiente e l’industria sarà portata ad aumentarne sensibilmente la produzione e contenerne i costi.

Nel suo complesso il GPP ha la capacità potenziale di:

influenzare il mercato, quindi anche gli stakeholders che operano intorno ad esso (imprese, altri consumatori);

favorire l’integrazione delle considerazioni ambientali nelle politiche di altre settori;

facilitare l’integrazione ed attuazione di svariati strumenti nell’ambito delle politiche integrate di prodotto degli enti locali.

Inoltre va osservato che l’acquisto di beni e servizi a impatto ambientale ridotto può essere asservito al raggiungimento di obiettivi di protezione ambientale specifici (riduzione dei consumi complessivi; risparmio energetico, riduzione della produzione dei rifiuti, ecc.). Ma attenzione: prodotti e servizi a impatto ambientale ridotto, per poter essere considerati tali, devono possedere dei requisiti specifici. La maniera più diretta per verificare che un prodotto/servizio abbia tali requisiti è quel la di fare riferimento ai criteri ecologici che il prodotto/servizio deve rispettare per ottenere un’etichetta ecologica. Ciò garantisce sia la “scientificità” che la “fattibilità” del criterio ecologico stesso.

Tutto questo ha cominciato a essere recepito a partire dal Piano d’Implementazione di Johannesburg (nell’ambito del World Summit on Sustainable Development del 2002): il Piano indica che le autorità pubbliche dovrebbero essere indirizzate ad integrare gli obiettivi di sviluppo sostenibile nei processi decisionali, inclusi quelli che riguardano la pianificazione per lo sviluppo locale, gli investimenti e gli acquisti pubblici, attraverso lo sviluppo e la diffusione di prodotti e servizi compatibili con l’ambiente (il GPP, Green Public Procurement).

Questi indirizzi si sono riverberati in Italia nella Strategia d’Azione Ambientale per lo Sviluppo Sostenibile in Italia, approvata nel 2002 dal Ministero dell’Ambiente che indica gli obiettivi e i target, in termini di beni ecologici acquistati, che la Pubblica Amministrazione dovrebbe raggiungere entro il 2006: l’obiettivo è il 30% dei beni che dovrebbe rispondere a specifici requisiti ecologici. Inoltre il 30-40% del parco dei beni durevoli dovrebbe essere a ridotto consumo energetico.

La Legge Finanziaria 296 del 27 Dicembre 2006 ha previsto infine l’elaborazione di un “Piano d’azione per la sostenibilità ambientale dei consumi nel settore della pubblica amministrazione”. Il Decreto Interministeriale n. 135 dell’11 Aprile 2008 ha recepito il Piano d’Azione predisposto dal Ministero dell’Ambiente e della Tutela del Territorio e del Mare ed approvato di concerto con il Ministero dell’Economia.

Le prime norme in materia di acquisti ambientalmente preferibili apparsi a livello nazionale facevano riferimento ad alcuni tipi di materiali di recupero: materiali biodegradabili, carta, plastica, materiali generici. Gli interventi hanno riguardato principalmente la promozione dell’uso della carta riciclata con relativa fissazione di obiettivi minimi di copertura del fabbisogno di prodotti con materiali riciclati che vanno dal 20 al 50%.

Fortunatamente negli ultimi anni si è vista però un’evoluzione del contesto normativo che tende a spronare l’introduzione di sistemi di acquisti verdi e non solo di acquisti di singoli materiali. Ne sono un esempio le “Norme per la promozione degli acquisti pubblici ecologici e per l’introduzione degli aspetti ambientali nelle procedure di acquisto di beni e servizi delle amministrazioni pubbliche” della Regione Puglia che prevedono che la Regione, le Province, i Comuni con più di 5000 abitanti approvino un Piano d’Azione di durata triennale finalizzato alla definizione di un programma operativo per l’introduzione dei criteri ambientali nelle procedure d’acquisto di beni e servizi e volto a conseguire l’obiettivo di riconversione al termine del triennio di almeno il 30 % delle proprie forniture.

Introdurre seriamente delle pratiche di GPP nella pubblica amministrazione richiede una pianificazione attenta. In particolare devono essere riviste in chiave ecologica le fasi di:

  • definizione dell’oggetto;

  • definizione delle specifiche tecniche relative;

  • selezione dei candidati;

  • aggiudicazione;

  • esecuzione.

Un elemento chiave per il successo del GPP è l’informazione del personale della PA e soprattutto la raccolta della “best practices” in materia.

ICLEI (International Council for Local Environmental Initiatives) una ONG che coopera attivamente con l’ONU e che raccoglie oltre 1200 Pubbliche Amministrazioni nel Mondo, ha studiato diversi protocolli ed implementato molte iniziative infrastrutturali per aiutare Comuni, Provincie, Regioni e Governi ad integrare il processo GPP, particolarmente apprezzato è Protocollo “Procura +”, ideato per offrire delle linee guida alle Amministrazioni in materia di:

  • elettricità da risorse rinnovabili;

  • computer e apparecchi elettronici ad alta efficienza energetica;

  • cibi biologici per mense, ospedali e catering in genere;

  • edifici che rispettino standard elevati di efficienza nel riscaldamento e nel condizionamento;

  • servizi per la pulizia orientati alla protezione della salute umana;

  • servizi di trasporto pubblico orientati alla qualità e con mezzi ad emissioni ridotte.

Le review effettuate sulle esperienze di GPP hanno mostrato che l’adozione di una strategia di acquisti verdi può portare anche ad una razionalizzazione complessiva delle politiche d’acquisto e quindi a dei benefici economici oltre che ambientali. Inoltre, tutti gli ostacoli legati alla difficoltà di promuovere il cambiamento, che spesso caratterizza diversi settori dell’amministrazione, possono essere superati dall’adozione di una politica organizzata e degli strumenti di supporto idonei all’introduzione del GPP.

Parte in Italia il Fondo Kyoto

ImageE’ partito il Fondo Kyoto, 600 M€ messi a disposizione dalla Cassa Depositi e Prestiti per progetti di riduzione della CO2 (ma non solo).

I dettagli sono riportati nel sito della CDDPP:
e nella circolare esplicativa: